A Theory of Anti-Selfdual Lagrangians: Stationary Case

نویسنده

  • Nassif Ghoussoub
چکیده

We develop a concept of anti-self dual Lagrangians that seems inherent to many problems in mathematical physics, Riemannian geometry, and differential equations. On one hand, they represent gradients of convex functions which usually drive dissipative systems, and on the other, their structure is rich enough to also cover – certain representations of– skewsymmetric operators which normally generate unitary flows. These Lagrangians provide variational formulations and resolutions for several non-potential boundary value problems many of which do not fit in the Euler-Lagrange theory. Solutions are minima of functionals of the form L(u,Λu) where L is an anti-self dual Lagrangian and where Λ is a skew-adjoint operator. However, and just like the self (antiself) dual equations of quantum field theory (e.g. Yang-Mills, Seiberg-Witten and Ginzburg-Landau) the equations associated to minimal solutions of our variational problems are not derived from the fact they are critical points of the associated functionals, but because they are also zeroes of the corresponding Lagrangians. Résumé Une théorie des Lagrangiens anti-autoduaux: Cas stationnaire: On introduit et développe la notion de Lagrangien anti-autodual qui apparait dans plusieurs problèmes de géométrie et de physique théorique. Cette classe inclut les champs de gradient de fonctions convexes qui sont à la base de systèmes dissipatifs, mais aussi contient les opérateurs antisymétriques qui, par contre, engendrent des flots conservatifs. Comme pour les équations autoduales de Yang-Mills, Seiberg-Witten et Ginzburg-Landau, ces Lagrangiens permettent la résolution variationnelle de plusieurs équations différentielles du premier ordre qui ne rentrent pas donc dans le cadre de la théorie de Euler-Lagrange. Version francaise abrégée: On montre que plusieurs équations de la forme Au+∂φ(u) = f avec φ convexe s.c.i. sur un reflexif X , f ∈ X et A : X → X étant un opérateur linéaire borné positif, peuvent être résolues en minimisant des fonctionelles de la forme I(u) = L(u,Λu) où L est un Lagrangien anti-autodual (i.e L(p, x) = L(−x,−p)) sur X × X et où Λ est un opérateur antisymétrique de X dans X. Ces Lagrangiens permettent des formulations et des résolutions variationnelles de plusieurs équations différentielles qui ne rentrent pas normalement dans le cadre de la théorie classique de Euler-Lagrange, puisque ∗Research partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The author gratefully acknowledges the hospitality and support of the Centre de Recherches Mathématiques in Montréal where this work was initiated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-selfdual Hamiltonians: Variational resolutions for Navier-Stokes and other nonlinear evolutions

The theory of anti-selfdual (ASD) Lagrangians developed in [8] allows a variational resolution for equations of the form Λu+Au+∂φ(u)+f = 0 where φ is a convex lower-semi-continuous function on a reflexive Banach space X, f ∈ X∗, A : D(A) ⊂ X → X∗ is a positive linear operator and where Λ : D(Λ) ⊂ X → X∗ is a non-linear operator that satisfies suitable continuity and anti-symmetry properties. AS...

متن کامل

Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems

Selfdual variational theory – developed in [7] and [8] – allows for the superposition of appropriate boundary Lagrangians with “interior” Lagrangians, leading to a variational formulation and resolution of problems with various linear and nonlinear boundary constraints that are not amenable to standard Euler-Lagrange theory. The superposition of several selfdual Lagrangians is also possible in ...

متن کامل

A Theory of Anti-Selfdual Lagrangians: Dynamical case

We consider the class of time-dependent anti-selfdual Lagrangians, which –just like the stationary case announced in [5]– enjoys remarkable permamence properties and provides variational formulations and resolutions for several initial-value parabolic equations including gradient flows and other dissipative systems. Even though these evolutions do not fit in the standard Euler-Lagrange theory, ...

متن کامل

Anti-symmetric Hamiltonians: Variational resolutions for Navier-Stokes and other nonlinear evolutions

The theory of anti-selfdual (ASD) Lagrangians –introduced in [7]– is developed further to allow for a variational resolution of non-linear PDEs of the form Λu+Au+ ∂φ(u)+ f = 0 where φ is a convex lower-semi-continuous function on a reflexive Banach space X , f ∈ X∗, A : D(A) ⊂ X → X∗ is a positive linear operator and where Λ :D(Λ)⊂X→X∗ is a non-linear operator that satisfies suitable continuity...

متن کامل

Selfdual variational principles for periodic solutions of Hamiltonian and other dynamical systems

Selfdual variational principles are introduced in order to construct solutions for Hamiltonian and other dynamical systems which satisfy a variety of linear and nonlinear boundary conditions including many of the standard ones. These principles lead to new variational proofs of the existence of parabolic flows with prescribed initial conditions, as well as periodic, anti-periodic and skew-perio...

متن کامل

On the Existence of Hamiltonian Paths Connecting Lagrangian Submanifolds

Abstract. We use a new variational method—based on the theory of anti-selfdual Lagrangians developed in [2] and [3]—to establish the existence of solutions of convex Hamiltonian systems that connect two given Lagrangian submanifolds in R . We also consider the case where the Hamiltonian is only semi-convex. A variational principle is also used to establish existence for the corresponding Cauchy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004